The table shows three unique functions.

| [tex]$x$[/tex] | [tex]$f(x)$[/tex] | [tex]$g(x)$[/tex] | [tex]$h(x)$[/tex] |
|-----|--------|--------|--------|
| -2 | -14 | [tex]$\frac{1}{49}$[/tex] | -28 |
| -1 | -7 | [tex]$\frac{1}{7}$[/tex] | -7 |
| 0 | 0 | 1 | 0 |
| 1 | 7 | 7 | -7 |
| 2 | 14 | 49 | -28 |

Which statements comparing the functions are true? Select three options.

A. Only [tex]$f(x)$[/tex] and [tex]$h(x)$[/tex] have [tex]$y$[/tex]-intercepts.
B. Only [tex]$f(x)$[/tex] and [tex]$h(x)$[/tex] have [tex]$x$[/tex]-intercepts.
C. The minimum of [tex]$h(x)$[/tex] is less than the other minimums.
D. The range of [tex]$h(x)$[/tex] has more values than the other ranges.
E. The maximum of [tex]$g(x)$[/tex] is greater than the other maximums.



Answer :

Let's analyze the functions [tex]\( f(x) \)[/tex], [tex]\( g(x) \)[/tex], and [tex]\( h(x) \)[/tex] based on the given table:

[tex]\[ \begin{array}{|c|c|c|c|} \hline x & f(x) & g(x) & h(x) \\ \hline -2 & -14 & \frac{1}{49} & -28 \\ \hline -1 & -7 & \frac{1}{7} & -7 \\ \hline 0 & 0 & 1 & 0 \\ \hline 1 & 7 & 7 & -7 \\ \hline 2 & 14 & 49 & -28 \\ \hline \end{array} \][/tex]

1. Y-Intercepts:
The [tex]\( y \)[/tex]-intercept of a function is the value of the function when [tex]\( x = 0 \)[/tex].

For [tex]\( f(x) \)[/tex]:
[tex]\[ f(0) = 0 \][/tex]

For [tex]\( g(x) \)[/tex]:
[tex]\[ g(0) = 1 \][/tex]

For [tex]\( h(x) \)[/tex]:
[tex]\[ h(0) = 0 \][/tex]

Therefore, only [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] have [tex]\( y \)[/tex]-intercepts at [tex]\( y = 0 \)[/tex].

2. X-Intercepts:
The [tex]\( x \)[/tex]-intercept of a function is the value of [tex]\( x \)[/tex] for which the function [tex]\( f(x) = 0 \)[/tex].

For [tex]\( f(x) \)[/tex]:
When [tex]\( x = 0 \)[/tex], [tex]\( f(x) = 0 \)[/tex].

For [tex]\( g(x) \)[/tex]:
There is no [tex]\( x \)[/tex] for which [tex]\( g(x) = 0 \)[/tex] in the given table.

For [tex]\( h(x) \)[/tex]:
When [tex]\( x = 0 \)[/tex], [tex]\( h(x) = 0 \)[/tex].

Therefore, only [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] have [tex]\( x \)[/tex]-intercepts.

3. Minimum Values:
[tex]\[ \text{Minimum of } f(x) = -14 \][/tex]
[tex]\[ \text{Minimum of } g(x) = \frac{1}{49} \approx 0.0204 \][/tex]
[tex]\[ \text{Minimum of } h(x) = -28 \][/tex]

The minimum of [tex]\( h(x) \)[/tex] is indeed less than the other minimum values.

4. Range of Values:
Let's find the unique values each function takes (i.e., the range).

For [tex]\( f(x) \)[/tex]:
[tex]\[ \{-14, -7, 0, 7, 14\} \][/tex]

For [tex]\( g(x) \)[/tex]:
[tex]\[ \left\{ \frac{1}{49}, \frac{1}{7}, 1, 7, 49 \right\} \][/tex]

For [tex]\( h(x) \)[/tex]:
[tex]\[ \{-28, -7, 0\} \][/tex]

Comparing the sizes of the sets:
[tex]\[ \text{Number of values in range of } f(x) = 5 \][/tex]
[tex]\[ \text{Number of values in range of } g(x) = 5 \][/tex]
[tex]\[ \text{Number of values in range of } h(x) = 3 \][/tex]

Therefore, the range of [tex]\( h(x) \)[/tex] does not have more values than the other ranges.

5. Maximum Values:
[tex]\[ \text{Maximum of } f(x) = 14 \][/tex]
[tex]\[ \text{Maximum of } g(x) = 49 \][/tex]
[tex]\[ \text{Maximum of } h(x) = 0 \][/tex]

The maximum of [tex]\( g(x) \)[/tex] is indeed greater than the other maximum values.

Based on this analysis, the following statements are true:

1. Only [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] have [tex]\( y \)[/tex]-intercepts.
2. Only [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] have [tex]\( x \)[/tex]-intercepts.
3. The minimum of [tex]\( h(x) \)[/tex] is less than the other minimums.
4. The maximum of [tex]\( g(x) \)[/tex] is greater than the other maximums.

However, the statement about [tex]\( h(x) \)[/tex] having more values in its range is not true.

Thus, the three correct options are:
- Only [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] have [tex]\( y \)[/tex]-intercepts.
- Only [tex]\( f(x) \)[/tex] and [tex]\( h(x) \)[/tex] have [tex]\( x \)[/tex]-intercepts.
- The minimum of [tex]\( h(x) \)[/tex] is less than the other minimums.

Other Questions