Differentiate the function.

[tex]\[
\begin{array}{l}
y=\ln \left(e^x + x e^x\right) \\
y^{\prime}=\square
\end{array}
\][/tex]



Answer :

Sure! Let's differentiate the function [tex]\( y = \ln(e^x + x e^x) \)[/tex].

To find [tex]\( y' \)[/tex], we'll need to use the chain rule and the properties of logarithms and exponential functions.

1. Identify the inner function:
[tex]\[ u = e^x + x e^x \][/tex]

2. Differentiate the natural logarithm:
According to the chain rule:
[tex]\[ y = \ln(u) \implies \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]

3. Differentiate the inner function [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ u = e^x + x e^x \][/tex]
Using the product rule for [tex]\( x e^x \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx}(e^x) + \frac{d}{dx}(x e^x) \][/tex]
The derivative of [tex]\( e^x \)[/tex] is [tex]\( e^x \)[/tex]:
[tex]\[ \frac{d}{dx}(e^x) = e^x \][/tex]
To differentiate [tex]\( x e^x \)[/tex], use the product rule:
[tex]\[ \frac{d}{dx}(x e^x) = x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(x) = x e^x + e^x \][/tex]
Combining these results:
[tex]\[ \frac{du}{dx} = e^x + (x e^x + e^x) = e^x + x e^x + e^x = x e^x + 2e^x \][/tex]

4. Substitute [tex]\( \frac{du}{dx} \)[/tex] and [tex]\( u \)[/tex] into the chain rule expression:
[tex]\[ \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} \][/tex]
[tex]\[ \frac{dy}{dx} = \frac{1}{e^x + x e^x} \cdot (x e^x + 2 e^x) \][/tex]

5. Simplify the expression:
[tex]\[ \frac{dy}{dx} = \frac{x e^x + 2 e^x}{e^x + x e^x} \][/tex]
Orthogonalizing terms we get:
[tex]\[ \frac{dy}{dx} = \frac{(x + 2) e^x}{(x + 1) e^x} \][/tex]

6. Cancel out the common [tex]\( e^x \)[/tex] factor in the numerator and the denominator:
[tex]\[ \frac{dy}{dx} = \frac{x + 2}{x + 1} \][/tex]

Hence, the derivative of the function [tex]\( y = \ln(e^x + x e^x) \)[/tex] is:
[tex]\[ y' = \frac{x e^x + 2 e^x}{x e^x + e^x} \][/tex]

Other Questions