Condense the expression to a single logarithm.

[tex]\[ \log_9 z + \frac{\log_9 x}{3} + \frac{\log_9 y}{3} \][/tex]

A. \(\log_9(z \sqrt[3]{yx})\)

B. None of the other answers are correct

C. \(\log_9\left(z^2 \sqrt[3]{x}\right)\)

D. \(\log_9\left(y^4 x^2\right)\)

E. [tex]\(\log_9 \frac{x^8}{y^4}\)[/tex]



Answer :

Certainly! Let's condense the expression \(\log_9 z + \frac{\log_9 x}{3} + \frac{\log_9 y}{3}\) into a single logarithm.

1. Combine the logarithms using the properties of logarithms:

The expression is \(\log_9 z + \frac{\log_9 x}{3} + \frac{\log_9 y}{3}\).

First, recall the property of logarithms that states \(\frac{\log_b a^c}{d} = \frac{\log_b a}{d} = \log_b a^{\frac{c}{d}}\).

Applying this to \(\frac{\log_9 x}{3}\):
[tex]\[ \frac{\log_9 x}{3} = \log_9 x^{\frac{1}{3}} \][/tex]

Applying this to \(\frac{\log_9 y}{3}\):
[tex]\[ \frac{\log_9 y}{3} = \log_9 y^{\frac{1}{3}} \][/tex]

So the expression becomes:
[tex]\[ \log_9 z + \log_9 x^{\frac{1}{3}} + \log_9 y^{\frac{1}{3}} \][/tex]

2. Combine the logarithms using the product rule:

The product rule for logarithms states that \(\log_b a + \log_b c = \log_b (a \cdot c)\).

Applying this to the expression:
[tex]\[ \log_9 z + \log_9 x^{\frac{1}{3}} = \log_9 (z \cdot x^{\frac{1}{3}}) \][/tex]

Then further including \(\log_9 y^{\frac{1}{3}}\):
[tex]\[ \log_9 (z \cdot x^{\frac{1}{3}}) + \log_9 y^{\frac{1}{3}} = \log_9 (z \cdot x^{\frac{1}{3}} \cdot y^{\frac{1}{3}}) \][/tex]

3. Simplify the expression:

Combining \(x^{\frac{1}{3}}\) and \(y^{\frac{1}{3}}\):
[tex]\[ z \cdot x^{\frac{1}{3}} \cdot y^{\frac{1}{3}} = z \cdot (x \cdot y)^{\frac{1}{3}} \][/tex]

So the condensed expression in terms of a single logarithm is:
[tex]\[ \log_9 \left(z \cdot (x \cdot y)^{\frac{1}{3}}\right) \][/tex]

Given the choices provided, the most accurate answer is:
[tex]\[ \log_9 \left(z \cdot \sqrt[3]{x \cdot y}\right) \][/tex]

This matches with one of the given answer choices:
[tex]\[ \log_9(z \cdot \sqrt[3]{yx}) \][/tex]

Other Questions