Answer :

To verify the trigonometric identity:

[tex]\[ \frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta \][/tex]

we can simplify both the numerator and the denominator to see if they equal \(\tan \theta = \frac{\sin \theta}{\cos \theta}\).

Starting with the numerator:

[tex]\[ \sin \theta - 2 \sin^3 \theta \][/tex]

We can factor out \(\sin \theta\):

[tex]\[ \sin \theta (1 - 2 \sin^2 \theta) \][/tex]

Using the Pythagorean identity \(\sin^2 \theta = 1 - \cos^2 \theta\), substitute for \(\sin^2 \theta\):

[tex]\[ \sin \theta \left(1 - 2(1 - \cos^2 \theta) \right) = \sin \theta (1 - 2 + 2 \cos^2 \theta) = \sin \theta (-1 + 2 \cos^2 \theta) \][/tex]

The numerator is now:

[tex]\[ \sin \theta (2 \cos^2 \theta - 1) \][/tex]

Next, let's simplify the denominator:

[tex]\[ 2 \cos^3 \theta - \cos \theta \][/tex]

We can factor out \(\cos \theta\):

[tex]\[ \cos \theta (2 \cos^2 \theta - 1) \][/tex]

So, the denominator is:

[tex]\[ \cos \theta (2 \cos^2 \theta - 1) \][/tex]

Putting both the simplified numerator and denominator together, we get:

[tex]\[ \frac{\sin \theta (2 \cos^2 \theta - 1)}{\cos \theta (2 \cos^2 \theta - 1)} \][/tex]

Since \(2 \cos^2 \theta - 1\) is common in both the numerator and denominator, it cancels out:

[tex]\[ \frac{\sin \theta}{\cos \theta} \][/tex]

We recognize that:

[tex]\[ \frac{\sin \theta}{\cos \theta} = \tan \theta \][/tex]

Therefore, we have shown that:

[tex]\[ \frac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta \][/tex]

Thus, the given trigonometric identity is correct.

Other Questions