As in the previous problem, 84 students are randomly selected from an accounting class at a local college. If [tex]$X[tex]$[/tex] is the number of students who received a [tex]$[/tex]B[tex]$[/tex] or above on the final exam, then the distribution of [tex]$[/tex]X[tex]$[/tex] can be approximated with a normal distribution, [tex]$[/tex]N(42, 4.6)[tex]$[/tex], where the mean [tex]$[/tex](\mu)[tex]$[/tex] is 42 and the standard deviation [tex]$[/tex](\sigma)$[/tex] is 4.6.

Using this approximation, find the probability of 45 or 46 students receiving a [tex]$B$[/tex] or above on the final exam in an accounting class. You may use the portion of the Standard Normal Table below.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline z & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\
\hline 0.5 & 0.6915 & 0.6950 & 0.6985 & 0.7019 & 0.7054 & 0.7088 & 0.7123 & 0.7157 & 0.7190 & 0.7224 \\
\hline 0.6 & 0.7257 & 0.7291 & 0.7324 & 0.7357 & 0.7389 & 0.7422 & 0.7454 & 0.7486 & 0.7517 & 0.7549 \\
\hline 0.7 & 0.7580 & 0.7611 & 0.7642 & 0.7673 & 0.7704 & 0.7734 & 0.7764 & 0.7794 & 0.7823 & 0.7852 \\
\hline 0.8 & 0.7881 & 0.7910 & 0.7939 & 0.7967 & 0.7995 & 0.8023 & 0.8051 & 0.8078 & 0.8106 & 0.8133 \\
\hline 0.9 & 0.8159 & 0.8186 & 0.8212 & 0.8238 & 0.8264 & 0.8289 & 0.8315 & 0.8340 & 0.8365 & 0.8389 \\
\hline 1.0 & 0.8413 & 0.8438 & 0.8461 & 0.8485 & 0.8508 & 0.8531 & 0.8554 & 0.8577 & 0.8599 & 0.8621 \\
\hline 1.1 & 0.8643 & 0.8665 & 0.8686 & 0.8708 & 0.8729 & 0.8749 & 0.8770 & 0.8790 & 0.8810 & 0.8830 \\
\hline
\end{tabular}



Answer :

We want to find the probability that either 45 or 46 students out of 84 will receive a B or above on the final exam. Given that the number of students, \(X\), follows a normal distribution \(N(42, 4.6)\) with a mean \(\mu = 42\) and standard deviation \(\sigma = 4.6\), we need to calculate the probabilities for \(X = 45\) and \(X = 46\).

First, let's standardize the values using the z-score formula:

[tex]\[ Z = \frac{X - \mu}{\sigma} \][/tex]

1. For \(X = 45\):

[tex]\[ Z = \frac{45 - 42}{4.6} \approx \frac{3}{4.6} \approx 0.652 \][/tex]

2. For \(X = 46\):

[tex]\[ Z = \frac{46 - 42}{4.6} \approx \frac{4}{4.6} \approx 0.870 \][/tex]

Now we need to determine the probabilities associated with these z-scores using the standard normal distribution table.

3. Finding the cumulative probability for \(Z = 0.652\):

Using the standard normal table, we need to find the value closest to \(Z = 0.652\). Looking at the z-table, we can see \(Z = 0.65\) is approximately 0.7422 (since 0.652 is very close to 0.65).

4. Finding the cumulative probability for \(Z = 0.870\):

Similarly, for \(Z = 0.870\), the corresponding probability from the table is 0.8078.

Next, we find the probability that \(X\) is between 45 and 46:

[tex]\[ P(45 \le X \le 46) = P(X \le 46) - P(X \le 45) \][/tex]

Using the cumulative probabilities:

[tex]\[ P(45 \le X \le 46) = 0.8078 - 0.7422 = 0.0656 \][/tex]

Thus, the probability that either 45 or 46 students will receive a B or above on the final exam is approximately [tex]\(0.0656\)[/tex] or [tex]\(6.56\%\)[/tex].

Other Questions